An efficient lattice Boltzmann multiphase model for 3D flows with large density ratios at high Reynolds numbers
نویسندگان
چکیده
We report on the development, implementation and validation of a new Lattice Boltzmann method (LBM) for the numerical simulation of three-dimensional multiphase flows (here with only two components) with both high density ratio and high Reynolds number. This method is based in part on, but aims at achieving a higher computational efficiency than Inamuro et al.’s model (Inamuro et al., 2004). Here, we use a LBM to solve both a pressureless Navier–Stokes equation, in which the implementation of viscous terms is improved, and a pressure Poisson equation (using different distribution functions and a D3Q19 lattice scheme); additionally, we propose a new diffusive interface capturing method, based on the Cahn–Hilliard equation, which is also solved with a LBM. To achieve maximum efficiency, the entire model is implemented and solved on a heavily parallel GPGPU co-processor. The proposed algorithm is applied to several test cases, such as a splashing droplet, a rising bubble, and a braking ocean wave. In all cases, numerical results are found to agree very well with reference data, and/or to converge with the discretization. © 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
Multiple - Relaxation - Time Lattice Boltzmann Method for Multiphase Flows with High Density and Viscosity Ratios - 10135
In this paper, the lattice Boltzmann method is reviewed for specific applications to numerical simulation of multiphase flow problems. A thorough literature review regarding the multi-phase lattice Boltzmann method was conducted with special focus on flows with large density and viscosity ratios between the two phases. A multiphase model with the capability of handling large-density-ratios is c...
متن کاملSimulation of Lid Driven Cavity Flow at Different Aspect Ratios Using Single Relaxation Time Lattice Boltzmann Method
Abstract Due to restrictions on the choice of relaxation time in single relaxation time (SRT) models, simulation of flows is generally limited base on this method. In this paper, the SRT lattice Boltzmann equation was used to simulate lid driven cavity flow at different Reynolds numbers (100-5000) and three aspect ratios, K=1, 1.5 and 4. The point which is vital in convergence of this scheme ...
متن کاملA lattice Boltzmann model for multiphase flows with large density ratio
A lattice Boltzmann model for simulating multiphase flows with large density ratios is described in this paper. The method is easily implemented. It does not require solving the Poisson equation and does not involve the complex treatments of derivative terms. The interface capturing equation is recovered without any additional terms as compared to other methods [M.R. Swift, W.R. Osborn, J.M. Ye...
متن کاملThe effect of boundary conditions on the accuracy and stability of the numerical solution of fluid flows by Lattice-Boltzmann method
The aim of this study is to investigate the effect of boundary conditions on the accuracy and stability of the numerical solution of fluid flows in the context of single relaxation time Lattice Boltzmann method (SRT-LBM). The fluid flows are simulated using regularized, no-slip, Zou-He and bounce back boundary conditions for straight surfaces in a lid driven cavity and the two-dimensional flow ...
متن کاملEfficient GPGPU implementation of a lattice Boltzmann model for multiphase flows with high density ratios
We present the development of a Lattice Boltzmann Method (LBM) for the numerical simulation of multiphase flows with high density ratios, such as found in ocean surface wave and air–sea interaction problems, and its efficient implementation on a massively parallel General Purpose Graphical Processing Unit (GPGPU). The LBM extends Inamuro’s et al.’s (2004) multiphase method by solving the Cahn–H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Mathematics with Applications
دوره 68 شماره
صفحات -
تاریخ انتشار 2014